direct product, metabelian, nilpotent (class 3), monomial
Aliases: C22×C3≀C3, C32.1C62, C62.19C32, He3⋊3(C2×C6), (C2×He3)⋊2C6, (C3×C62)⋊2C3, (C32×C6)⋊5C6, C33⋊9(C2×C6), C6.8(C2×He3), (C2×C6).14He3, (C22×He3)⋊3C3, C3.2(C22×He3), (C2×3- 1+2)⋊1C6, 3- 1+2⋊1(C2×C6), (C22×3- 1+2)⋊3C3, (C3×C6).6(C3×C6), SmallGroup(324,86)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22×C3≀C3
G = < a,b,c,d,e,f | a2=b2=c3=d3=e3=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ece-1=cd-1, cf=fc, de=ed, df=fd, fef-1=cd-1e >
Subgroups: 250 in 100 conjugacy classes, 40 normal (12 characteristic)
C1, C2, C3, C3, C22, C6, C6, C9, C32, C32, C2×C6, C2×C6, C18, C3×C6, C3×C6, He3, 3- 1+2, C33, C2×C18, C62, C62, C2×He3, C2×3- 1+2, C32×C6, C3≀C3, C22×He3, C22×3- 1+2, C3×C62, C2×C3≀C3, C22×C3≀C3
Quotients: C1, C2, C3, C22, C6, C32, C2×C6, C3×C6, He3, C62, C2×He3, C3≀C3, C22×He3, C2×C3≀C3, C22×C3≀C3
(1 12)(2 8)(3 7)(4 10)(5 6)(9 11)(13 32)(14 33)(15 31)(16 22)(17 23)(18 24)(19 34)(20 35)(21 36)(25 30)(26 28)(27 29)
(1 3)(2 6)(4 11)(5 8)(7 12)(9 10)(13 23)(14 24)(15 22)(16 31)(17 32)(18 33)(19 30)(20 28)(21 29)(25 34)(26 35)(27 36)
(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
(1 6 10)(2 9 3)(4 12 5)(7 8 11)(13 14 15)(16 17 18)(19 21 20)(22 23 24)(25 27 26)(28 30 29)(31 32 33)(34 36 35)
(1 21 14)(2 28 22)(3 29 24)(4 34 32)(5 35 31)(6 20 15)(7 27 18)(8 26 16)(9 30 23)(10 19 13)(11 25 17)(12 36 33)
(1 6 10)(2 9 3)(4 12 5)(7 8 11)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
G:=sub<Sym(36)| (1,12)(2,8)(3,7)(4,10)(5,6)(9,11)(13,32)(14,33)(15,31)(16,22)(17,23)(18,24)(19,34)(20,35)(21,36)(25,30)(26,28)(27,29), (1,3)(2,6)(4,11)(5,8)(7,12)(9,10)(13,23)(14,24)(15,22)(16,31)(17,32)(18,33)(19,30)(20,28)(21,29)(25,34)(26,35)(27,36), (13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,6,10)(2,9,3)(4,12,5)(7,8,11)(13,14,15)(16,17,18)(19,21,20)(22,23,24)(25,27,26)(28,30,29)(31,32,33)(34,36,35), (1,21,14)(2,28,22)(3,29,24)(4,34,32)(5,35,31)(6,20,15)(7,27,18)(8,26,16)(9,30,23)(10,19,13)(11,25,17)(12,36,33), (1,6,10)(2,9,3)(4,12,5)(7,8,11)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)>;
G:=Group( (1,12)(2,8)(3,7)(4,10)(5,6)(9,11)(13,32)(14,33)(15,31)(16,22)(17,23)(18,24)(19,34)(20,35)(21,36)(25,30)(26,28)(27,29), (1,3)(2,6)(4,11)(5,8)(7,12)(9,10)(13,23)(14,24)(15,22)(16,31)(17,32)(18,33)(19,30)(20,28)(21,29)(25,34)(26,35)(27,36), (13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,6,10)(2,9,3)(4,12,5)(7,8,11)(13,14,15)(16,17,18)(19,21,20)(22,23,24)(25,27,26)(28,30,29)(31,32,33)(34,36,35), (1,21,14)(2,28,22)(3,29,24)(4,34,32)(5,35,31)(6,20,15)(7,27,18)(8,26,16)(9,30,23)(10,19,13)(11,25,17)(12,36,33), (1,6,10)(2,9,3)(4,12,5)(7,8,11)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36) );
G=PermutationGroup([[(1,12),(2,8),(3,7),(4,10),(5,6),(9,11),(13,32),(14,33),(15,31),(16,22),(17,23),(18,24),(19,34),(20,35),(21,36),(25,30),(26,28),(27,29)], [(1,3),(2,6),(4,11),(5,8),(7,12),(9,10),(13,23),(14,24),(15,22),(16,31),(17,32),(18,33),(19,30),(20,28),(21,29),(25,34),(26,35),(27,36)], [(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)], [(1,6,10),(2,9,3),(4,12,5),(7,8,11),(13,14,15),(16,17,18),(19,21,20),(22,23,24),(25,27,26),(28,30,29),(31,32,33),(34,36,35)], [(1,21,14),(2,28,22),(3,29,24),(4,34,32),(5,35,31),(6,20,15),(7,27,18),(8,26,16),(9,30,23),(10,19,13),(11,25,17),(12,36,33)], [(1,6,10),(2,9,3),(4,12,5),(7,8,11),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)]])
68 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | ··· | 3J | 3K | 3L | 6A | ··· | 6F | 6G | ··· | 6AD | 6AE | ··· | 6AJ | 9A | 9B | 9C | 9D | 18A | ··· | 18L |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 9 | 9 | 9 | 9 | 18 | ··· | 18 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 3 | ··· | 3 | 9 | 9 | 1 | ··· | 1 | 3 | ··· | 3 | 9 | ··· | 9 | 9 | 9 | 9 | 9 | 9 | ··· | 9 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 |
type | + | + | ||||||||||
image | C1 | C2 | C3 | C3 | C3 | C6 | C6 | C6 | He3 | C2×He3 | C3≀C3 | C2×C3≀C3 |
kernel | C22×C3≀C3 | C2×C3≀C3 | C22×He3 | C22×3- 1+2 | C3×C62 | C2×He3 | C2×3- 1+2 | C32×C6 | C2×C6 | C6 | C22 | C2 |
# reps | 1 | 3 | 2 | 4 | 2 | 6 | 12 | 6 | 2 | 6 | 6 | 18 |
Matrix representation of C22×C3≀C3 ►in GL5(𝔽19)
18 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 7 |
7 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 18 | 0 |
7 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(19))| [18,0,0,0,0,0,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,11,0,0,0,0,0,7,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,0,0,7,0,0,0,0,0,7],[7,0,0,0,0,0,7,0,0,0,0,0,0,18,0,0,0,0,0,18,0,0,1,0,0],[7,0,0,0,0,0,7,0,0,0,0,0,7,0,0,0,0,0,1,0,0,0,0,0,1] >;
C22×C3≀C3 in GAP, Magma, Sage, TeX
C_2^2\times C_3\wr C_3
% in TeX
G:=Group("C2^2xC3wrC3");
// GroupNames label
G:=SmallGroup(324,86);
// by ID
G=gap.SmallGroup(324,86);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-3,-3,303,1096]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^3=e^3=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,e*c*e^-1=c*d^-1,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d^-1*e>;
// generators/relations